Persamaangaris lurus yang melalui titik (6, -3) dan tegak lurus garis 2x + 3y - 5 = 0 adalah A. 3/2 x - 3 B. y = 3/2 x - 6 C. 3/2 x - 9 D. 3/2 x - 12. Pembahasan / penyelesaian soal. Persamaan garis diatas dapat diubah bentuknya menjadi seperti dibawah ini: 2x + 3y - 5 = 0; 3y = -2x + 5; y = -2/3x + 5/3; Jadi kita ketahui m 1
belajarmatematika dasar SMA lewat Soal dan Pembahasan Matematika Dasar Lingkaran.Materi lingkaran, mungkin salah satu materi paling umum kita. C alon guru belajar matematika dasar SMA lewat Soal dan Pembahasan Matematika Dasar SMA tentang Lingkaran.Materi lingkaran, mungkin salah satu materi paling umum kita dengar di matematika.
Tanggaseperti tampak pada kedua gambar di atas merupakan contoh penerapan garis lurus dalam kehidupan sehari-hari. Agar tangga aman, nyaman, dan tidak berbahaya jika dinaiki maka harus Kemiringan garis dengan persamaan 3 T− U−4=0 adalah a. −4 b. −3 c. 3 d. 4 4.
Tolongpakai caranya - Brainlycoid persamaan garis b seperti tampak pada gambar adalah - Brainlycoid Edisi lupa pelajaran kelas 8 Soal. Admin blog Dapatkan Contoh 2019 juga mengumpulkan gambar-gambar lainnya terkait contoh soal dan pembahasan persamaan garis lurus smp kelas 8 dibawah ini.
8SMP Matematika ALJABAR Persamaan garis b seperti tampak pada gambar adalah . A. 2y = x - 1 B. 2y = -x - 1 C. 2y = x + 1 D. 2y = -x + 1 2 a b Bentuk Persamaan Garis Lurus dan Grafiknya PERSAMAAN GARIS LURUS ALJABAR Matematika Cek video lainnya Teks video Sukses nggak pernah instan. Latihan topik lain, yuk! Matematika Fisika Kimia 12 SMA
Persamaangaris p seperti tampak pada gambar adalah: 3y = -2x + 18. 2y = 3x + 9. 2y = -3x + 9. 3y = -2x - 18. Penjelasan dan Pembahasan. Jawaban a. 3y = -2x + 18 menurut saya ini salah, karena sudah menyimpang jauh dari apa yang ditanyakan.. Jawaban b. 2y = 3x + 9 menurut saya ini juga salah, karena setelah saya cek di situs ruangguru ternyata lebih tepat untuk jawaban pertanyaan lain.
Persamaangaris b seperti tampak pada gambar adalah · · · · A. 2 y = x-1 B. 2 y =-x-1 C. 2 y = x + 1 D. 2 y =-x + 1 24. Diketahui titik A (4, 10), B (-1, p), dan C (2, 2) terletak pada satu garis lurus. Nilai p adalah · · · · A.-10 B.-5 C. 5 D. 10 25. Empat di antara lima titik (2, 4), (4, 7), (7, 10), (10, 16), dan (16, 25) membentuk
Persamaangaris b seperti tampak pada gambar adala Pertanyaan Persamaan garis b seperti tampak pada gambar adalah . 2y = x - 1 2y = - x -1 2y = x + 1 2y = - x + 1 KP K. Putri Master Teacher Mahasiswa/Alumni Universitas Pendidikan Ganesha Jawaban terverifikasi Pembahasan Mau dijawab kurang dari 3 menit? Coba roboguru plus! 1rb+ 5.0 (2 rating)
DetailPersamaan Garis P Seperti Tampak Pada Gambar Adalah Brainly Co Id. Foto; Wallpaper; Kategori Lainnya Animasi; Mobil; Motor; Kaligrafi; Puisi; Surat; Meme; Quotes; Persamaan Garis P Seperti Tampak Pada Gambar Adalah Brainly Co Id. Tipe Gambar. jpg. Dimensi Gambar. 1470 x 2844. Besaran Gambar. 597.72 KiB.
Tanggauntuk tempat tidur tingkat seperti tampak pada gambar di samping merupakan salah satu contoh penerapan garis lurus dalam kehidupan sehari-hari. Agar tangga aman, nyaman, dan tidak berbahaya jika dinaiki, maka harus ditentukan dengan tepat kemiringan tangga tersebut. Gambar Tempat tidur dengan tangga
3sjkqz. Pembahasan soal Matematika SMP Ujian Nasional UN tahun 2016 nomor 21 sampai dengan nomor 25 tentang grafik fungsi kuadrat, sistem persamaan linear, garis dan sudut, serta sifat segitiga. Soal No. 21 tentang Grafik Fungsi Garis Lurus Persamaan garis b seperti tampak pada gambar adalah …. A. 2y = x − 1 B. 2y = −x − 1 C. 2y = x + 1 D. 2y = −x + 1 Garis a melalui titik −1, 0 dan 0, 2. Gradien garis a adalah ma = y/x = 2 − 0/0 − −1 = 2 Garis b tegak lurus garis a. Dua garis yang saling tegak lurus, perkalian gradiennya sama dengan −1. ma × mb = −1 2 × mb = −1 mb = −1/2 Garis b melalui titik −1,0 dengan gradien −1/2 adalah y − y1 = mx − y1 y − 0 = −1/2 x + 1 Masing-masing suku kalikan dengan 2, diperoleh 2y = −x − 1 Jadi, persamaan garis b adalah 2y = −x − 1 B. Soal No 22 tentang Sistem Persamaan Linear Seorang tukang parkir mendapat uang sebesar dari 3 buah mobil dan 5 buah motor, sedangkan dari 4 buah mobil dan 2 buah motor ia mendapat uang Jika terdapat 20 mobil dan 30 motor, banyak uang parkir yang ia peroleh adalah …. A. B. C. D. Pembahasan Kita misalkan terlebih dahulu. x mobil y motor Model matematika untuk soal di atas adalah 3x + 5y = … 1 4x + 2y = 2x + y = … 2 Sekarang kita eliminasi 2 persamaan tersebut. 2x + y = ×5 10x + 5y = 3x + 5y = ×1 3x + 5y = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ − 7x = x = Substitusi x = ke persamaan 2. 2x + y = 2× + y = + y = y = Jika terdapat 20 mobil dan 30 motor, banyak uang parkir yang ia peroleh adalah 20x + 30y = 20× + 30× = + = Jadi, banyak uang parkir yang ia peroleh adalah C. Soal No. 23 tentang Garis dan Sudut Perhatikan gambar berikut! Besar pelurus sudut KLN adalah …. A. 31° B. 72° C. 85° D. 155° Pembahasan Hati-hati dengan soal di atas, yang ditanyakan bukan sudut KLN, tetapi pelurus sudut KLN, yaitu sudut MLN. Karena kedua sudut saling berpelurus maka jumlah keduanya adalah 180°. ∠KLN + ∠MLN = 180° 3x + 15° + 2x + 10° = 180° 5x + 25° = 180° 5x = 155° x = 31° Dengan demikian, pelurus ∠KLN adalah pelurus ∠KLN = ∠MLN = 2x + 10° = 2×31° + 10° = 62° + 10° = 72° Jadi, pelurus sudut KLM adalah 72° B. Soal No. 24 tentang Garis dan Sudut Perhatikan gambar! Besar sudut BAC adalah …. A. 30° B. 40° C. 50° D. 90° Pembahasan Sudut ABC berpelurus dengan sudut CBD sehingga ∠ABC + ∠CBD = 180° ∠ABC + 140° = 180° ∠ABC = 40° Sementara itu, jumlah sudut-sudut segitiga sama dengan 180°. ∠A + ∠B + ∠C = 180° y + 10° + 40° + 2y +10° = 180° 3y + 60° = 180° 3y = 120° y = 40° Nah, sekarang masuk ke pertanyaan. ∠BAC = y + 10° = 40° + 10° = 50° Jadi, Besar sudut BAC adalah 50° C. Soal No. 25 tentang Sifat Segitiga Panjang sisi sebuah segitiga adalah p, q, dan r, dengan p > q > r. Pernyataan yang benar untuk segitiga tersebut adalah …. A. p + q p C. p − q q Pembahasan Syarat terbentuknya segitiga adalah sisi terpanjang harus lebih kecil dari jumlah dua sisi lainnya. Jika panjang sisi-sisi sebuah segitiga adalah p, q, dan r, dengan p > q > r p sisi terpanjang maka berlaku q + r > p Bentuk di atas tidak terdapat pada opsi jawaban. Mari kita pindah ruas! q − p > −r Masih tidak ada. Sekarang masing-masing suku dikalikan negatif tanda pertidaksamaan akan berubah −q + p < r p − q < r Nah, ada kan? Jadi, pernyataan yang benar untuk segitiga tersebut adalah opsi C. Simak Pembahasan Soal Matematika SMP UN 2016 selengkapnya. Dapatkan pembahasan soal dalam file pdf di sini. Demikian, berbagi pengetahuan bersama Kak Ajaz. Silakan bertanya di kolom komentar apabila ada pembahasan yang kurang jelas. Semoga berkah.
Postingan ini membahas contoh soal persamaan garis lurus dan pembahasannya atau penyelesaiannya + jawaban. Penerapan persamaan garis lurus dalam kehidupan sehari-hari sangat banyak, salah satunya adalah tangga. Tangga yang sering kalian temui di kehidupan sehari-hari biasanya berbentuk garis lurus dan selalu diletakkan dengan posisi miring terhadap lantai. Secara umum persamaan garis lurus mempunyai bentuk y = mx + c, dengan m menyatakan gradien. Sedangkan rumus persamaan garis lurus sebagai persamaan garis lurusPersamaan pertama adalah persamaan garis lurus dengan gradien dan melewati titik x1, y1. Sedangkan persamaan kedua adalah persamaan garis lurus yang melalui dua titik yaitu A x1, y1 dan titik B x2, y2.Contoh soal 1 UN 2016 SMPPersamaan garis yang melalui titik R-3, -2 dengan gradien 2 adalah…A. 2x + y – 4 = 0 B. 2x – y + 4 = 0C. 2x + y + 4 = 0 D. 2x – y – 4 = 0Pembahasan / penyelesaian soalPada soal ini diketahuix1 = – 3y1 = – 2m = 2Cara menjawab soal ini sebagai berikuty – y1 = m x – x1y – -2 = 2 x – -3y + 2 = 2 x + 3y + 2 = 2x + 62x – y + 6 – 2 = 02x – y + 4 = 0Soal ini jawabannya soal 2 UN 2016Persamaan garis yang melalui titik P-1, 2 dengan gradien 1/2 adalah…A. x + 2y – 5 = 0 B. x – 2y – 5 = 0 C. x – 2y + 5 = 0 D. x + 2y + 5 = 0Pembahasan / penyelesaian soalPada soal ini diketahuix1 = – 1y1 = 2m = 1/2Cara menentukan persamaan garis lurus sebagai berikuty – y1 = m x – x1y – 2 = 1/2 x – -1y – 2 = 1/2 x + 1y – 2 = 1/2x + 1/21/2x – y + 1/2 + 21/2x – y + 5/2 = 0 dikali 2x – 2y + 5 = 0Soal ini jawabannya soal 3 UN 2017 SMPPersamaan garis melalui titik -2, 3 dan bergradien -3 adalah …A. x + 3y + 3 = 0 B. x – 3y + 3 = 0 C. 3x + y + 3 = 0 D. 3x – y + 3 = 0Pembahasan / penyelesaian soalPada soal ini diketahuix1 = -2y1 = 3m = -3Cara menjawab soal ini sebagai berikuty – y1 = m x – x1y – 3 = -3 x – -2y – 3 = -3 x + 2y – 3 = -3x – 63x + y – 3 + 6 = 03x + y + 3 = 0Soal ini jawabannya soal 4Persamaan garis yang melalui titik 2, 5 dan 3, 9 adalah…A. y = 4x – 3 B. y = 4x – 5 C. y = 4x – 8 D. y = 4x – 13Pembahasan / penyelesaian soalPada soal ini diketahuix1 = 2y1 = 5x2 = 3y2 = 9Cara menjawab soal ini sebagai berikut→ y – y1y2 – y1 = x – x1x2 – x1 → y – 59 – 5 = x – 23 – 2 → y – 54 = x – 21 → y – 5 = 4 x – 2 → y – 5 = 4x – 8 → y = 4x – 8 + 5 = 4x – 3Soal ini jawabannya soal 5Persamaan garis lurus yang melalui titik 0, 3 dan 4, 0 adalah…A. y = -4/3 x + 3 B. y = – 3/4 x + 3 C. y = 3/4 x + 3 D. y = 4/3 x + 3Pembahasan / penyelesaian soalDiketahui x1 = 0y1 = 3x2 = 4y2 = 0Cara menjawab soal ini sebagai berikut.→ y – y1y2 – y1 = x – x1x2 – x1 → y – 33 – 0 = x – 00 – 4 → y – 33 = x-4 → -4 y – 3 = 3x → -4y + 12 = 3x → 4y = -3x + 12 → y = – 3/4 x + 3Soal ini jawabannya soal 6Persamaan garis gambar dibawah ini adalah…Contoh soal persamaan garis lurus nomor 6A. y = x – 3B. y = 3 – x C. y = x + 3 D. y = 3xPembahasan / penyelesaian soalGaris lurus pada gambar diatas melalui dua titik yaitu 3, 0 dan 0, 3. Jadi pada soal ini diketahuix1 = 3y1 = 0x2 = 0y2 = 3Cara menentukan persamaan garis gambar diatas sebagai berikut→ y – y1y2 – y1 = x – x1x2 – x1 → y – 03 – 0 = x – 30 – 3 → y3 = x – 3-3 → -3y = 3 x – 3 → -3y = 3x – 9 dibagi 3 → -y = x – 3 → y = -x + 3 atau 3 – xSoal ini jawabannya soal 7Persamaan garis lurus yang melalui titik 2, -6 dan sejajar garis y = 3x + 4 adalah…A. y = 3x – 6 B. y = 3x – 12 C. y = 3x + 6 D. y = 6x + 3Pembahasan / penyelesaian soalPada soal ini diketahuix1 = 2y1 = -6m = 3 diperoleh dari y = mx + c atau y = 3x + 4Jadi persamaan garis yang melalui titik 2, -6 sebagai berikuty – y1 = m x – x1y – -6 = 3 x – 2y + 6 = 3x – 6y = 3x – 6 – 6 = 3x – 12Soal ini jawabannya soal 8Persamaan garis yang melalui 2, 8 dan sejajar garis 2y = 4x – 2 adalah…A. y = 1/2 x + 4 B. y = – 1/2 x – 1 C. y + 2x = 4D. y – 2x = 4Pembahasan / penyelesaian soal2y = 4x – 2 diubah menjadi y = 2x – 1. Jadi m = 2. Maka persamaan garis yang sejajar 2y = 4x – 2 sebagai berikuty – y1 = m x – x1y – 8 = 2 x – 2y – 8 = 2x – 4y – 2x = -4 + 8y – 2x = 4Soal ini jawabannya soal 9 UN 2016 SMPPersamaan garis b seperti tampak pada gambar adalah…Contoh soal persamaan garis lurus nomor 9A. 2y = x – 1B. 2y = – x – 1 C. 2y = x + 1 D. 2y = -x + 1Pembahasan / penyelesaian soalPada gambar diatas titik yang dilalui garis a adalah -1, 0 dan 0, 2 sehingga kita dapat gradien garis a sebagai berikut→ ma = y – yx – x → mb = 2 – 00 – -1 = 2Karena garis a dan b saling tegak lurus maka berlaku hubungan ma . mb = -1. Maka kita peroleh→ mb = -1ma → mb = – 12 Jadi persamaan garis b melalui titik -1, 0 sebagai berikuty – yb = mb x – xby – 0 = -1/2 x – -1y = -1/2x – 1/2 dikali 22y = -x – 1Soal ini jawabannya soal 10Persamaan garis lurus yang melalui titik 6, -3 dan tegak lurus garis 2x + 3y – 5 = 0 adalah…A. 3/2 x – 3 B. y = 3/2 x – 6 C. 3/2 x – 9 D. 3/2 x – 12Pembahasan / penyelesaian soalPersamaan garis diatas dapat diubah bentuknya menjadi seperti dibawah ini2x + 3y – 5 = 03y = -2x + 5y = -2/3x + 5/3Jadi kita ketahui m1 = -2/3. Karena tegak lurus maka berlaku m1 . m2 = -1 sehingga kita peroleh→ m2 = -1m1 → m2 = -1-2/3 = 3/2Jadi persamaan garis yang melalui titik 6, -3 sebagai berikuty – y2 = m x – x2y – -3 = 3/2 x – 6y + 3 = 3/2x – 9y = 3/2x – 9 – 3y = 3/2x – 12Soal ini jawabannya E.
BerandaPersamaan garis b seperti tampak pada gambar adala...PertanyaanPersamaan garis b seperti tampak pada gambar adalah .... RDMahasiswa/Alumni Universitas Negeri MalangPembahasanGradien a adalah Garis b tegak lurus garis a, maka dan garis b melalui titik -1, 0 Maka garis b Gradien a adalah Garis b tegak lurus garis a, maka dan garis b melalui titik -1, 0 Maka garis b Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!299Yuk, beri rating untuk berterima kasih pada penjawab soal!KAKeysha Aulia Pradani Ini yang aku cari! Makasih ❤️©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia